Red Blood Cell
Red Blood Cell (RBC) count is a measure of the number of red blood cells in the blood. Low RBC count (anemia) can cause fatigue, shortness of breath, and other symptoms.
iollo markers that associate with Red Blood Cell
Arachidonic acid
Arachidonic acid is a key component of red blood cell membranes and plays a role in regulating red blood cell flexibility and stability. Changes in arachidonic acid levels can impact red blood cell structure and function.
References
References
Yang, Y., Zhang, H., Zhang, Y., Wang, Y., & Wang, J.. Arachidonic acid causes hidden blood loss-like red blood cell damage in patients with hematological diseases. Journal of Translational Medicine (2017). https://pubmed.ncbi.nlm.nih.gov/28501110/
Piergiorgio Messa, Donatella Londero, Fabio Massarino, Luisa Paganin, Giuseppe Mioni, Filiberto Zattoni, Giuseppe Cannella. Abnormal arachidonic acid content of red blood cell membranes and main lithogenic factors in stone formers. Nephrology Dialysis Transplantation (2000). https://academic.oup.com/ndt/article/15/9/1388/1874190
Sánchez-Rodríguez, B., Sotos-Prieto, M., Sánchez-Villegas, A., Martínez, J. A., & Martínez-González, M. A.. The red blood cell proportion of arachidonic acid relates to shorter leukocyte telomeres in Mediterranean elders: A secondary analysis of a randomized controlled trial. Molecular Nutrition & Food Research (2018). https://www.sciencedirect.com/science/article/abs/pii/S0261561418300748
Yang, Y., Zhang, H., Zhang, Y., Wang, Y., & Wang, J.. Arachidonic acid causes hidden blood loss-like red blood cell damage in patients with hematological diseases. Journal of Translational Medicine (2017). https://pubmed.ncbi.nlm.nih.gov/29478886/
Docosahexaenoic acid
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that can incorporate into red blood cell membranes and influence their fluidity and function. DHA levels correlate with red blood cell omega-3 content.
References
References
Tan, Z. S., Harris, W. S., Beiser, A. S., Au, R., Himali, J. J., Debette, S., … & Seshadri, S.. “Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging”. Neurology (2012). https://n.neurology.org/content/78/9/658
Harris, W. S., Pottala, J. V., Varvel, S. A., & McLester, C. R.. “Red blood cell fatty acid patterns from 7 countries: Focus on the Omega-3 Index”. Prostaglandins, Leukotrienes and Essential Fatty Acids (2022). https://www.sciencedirect.com/science/article/pii/S0952327822000308
Anderson, R. E., & Rosenfeld, P. J.. “Docosahexaenoic acid in red blood cells of patients with X-linked retinitis pigmentosa”. Investigative Ophthalmology & Visual Science (2014). https://iovs.arvojournals.org/article.aspx?articleid=2161190
Kwong, L. K., Shen, H., & Hu, F. B.. “Determinants of Erythrocyte Omega‐3 Fatty Acid Content in Response to Supplementation”. Journal of the American Heart Association (2013). https://www.ahajournals.org/doi/full/10.1161/JAHA.113.000513
Phosphatidylcholine aa C36:4
Phosphatidylcholines are major structural components of red blood cell membranes. Changes in phosphatidylcholine aa C36:4 may indicate alterations in red blood cell membrane phospholipid composition.
References
References
Christie WW, Haest CW, Renooij W, Van Golde LM, Zwaal RF, Van Deenen LL, Allen DW, Manning N, van Meer G, Op den Kamp JA, Asaro RJ, Zhu Q, Cabrales P, Dodge JT, Phillips GB, Percy AK, Schmell E, Earles BJ, Lennarz WJ. Terminal maturation of human reticulocytes to red blood cells by rearrangement of membrane lipid composition. Various (1967-2018). https://www.biorxiv.org/content/10.1101/2023.06.02.543386v1.full.pdf
Not specified. Shortening of membrane lipid acyl chains compensates for… EMBO Journal (2021). https://www.embopress.org/doi/full/10.15252/embj.2021107966
Not specified. Insight into erythrocyte phospholipid molecular flux in healthy humans… PLOS ONE (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711597/
Not specified. Deciphering Lipid Arrangement in Phosphatidylserine… NCBI (2023). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753890/
Sphingomyelin C24:1
Sphingomyelins are important lipids in red blood cell membranes. Alterations in sphingomyelin C24:1 levels may reflect changes in red blood cell membrane composition and integrity.
References
References
L. B., S. M., V. H., and R. V.. N-Nervonoylsphingomyelin (C24:1) Prevents Lateral Heterogeneity in Lipid Mixtures. Biochimica et Biophysica Acta (BBA) - Biomembranes (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070274/
S. L. and J. L.. C24 Sphingolipids Govern the Transbilayer Asymmetry of Lipids in Red Blood Cells. Biochimica et Biophysica Acta (BBA) - Biomembranes (2018). https://www.sciencedirect.com/science/article/pii/S2211124718310465
F. L., J. L., and S. L.. C24:0 and C24:1 sphingolipids in cholesterol-containing, five-component lipid mixtures. Scientific Reports (2020). https://doi.org/10.1038/s41598-020-71008-8