Red Blood Cell (RBC) count is a measure of the number of red blood cells in the blood. Low RBC count (anemia) can cause fatigue, shortness of breath, and other symptoms.
Arachidonic acid is a key component of red blood cell membranes and plays a role in regulating red blood cell flexibility and stability. Changes in arachidonic acid levels can impact red blood cell structure and function.
References
Yang, Y., Zhang, H., Zhang, Y., Wang, Y., & Wang, J.. Arachidonic acid causes hidden blood loss-like red blood cell damage in patients with hematological diseases. Journal of Translational Medicine (2017). https://pubmed.ncbi.nlm.nih.gov/28501110/Piergiorgio Messa, Donatella Londero, Fabio Massarino, Luisa Paganin, Giuseppe Mioni, Filiberto Zattoni, Giuseppe Cannella. Abnormal arachidonic acid content of red blood cell membranes and main lithogenic factors in stone formers. Nephrology Dialysis Transplantation (2000). https://academic.oup.com/ndt/article/15/9/1388/1874190Sánchez-Rodríguez, B., Sotos-Prieto, M., Sánchez-Villegas, A., Martínez, J. A., & Martínez-González, M. A.. The red blood cell proportion of arachidonic acid relates to shorter leukocyte telomeres in Mediterranean elders: A secondary analysis of a randomized controlled trial. Molecular Nutrition & Food Research (2018). https://www.sciencedirect.com/science/article/abs/pii/S0261561418300748Yang, Y., Zhang, H., Zhang, Y., Wang, Y., & Wang, J.. Arachidonic acid causes hidden blood loss-like red blood cell damage in patients with hematological diseases. Journal of Translational Medicine (2017). https://pubmed.ncbi.nlm.nih.gov/29478886/
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that can incorporate into red blood cell membranes and influence their fluidity and function. DHA levels correlate with red blood cell omega-3 content.
References
Tan, Z. S., Harris, W. S., Beiser, A. S., Au, R., Himali, J. J., Debette, S., … & Seshadri, S.. “Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging”. Neurology (2012). https://n.neurology.org/content/78/9/658Harris, W. S., Pottala, J. V., Varvel, S. A., & McLester, C. R.. “Red blood cell fatty acid patterns from 7 countries: Focus on the Omega-3 Index”. Prostaglandins, Leukotrienes and Essential Fatty Acids (2022). https://www.sciencedirect.com/science/article/pii/S0952327822000308Anderson, R. E., & Rosenfeld, P. J.. “Docosahexaenoic acid in red blood cells of patients with X-linked retinitis pigmentosa”. Investigative Ophthalmology & Visual Science (2014). https://iovs.arvojournals.org/article.aspx?articleid=2161190Kwong, L. K., Shen, H., & Hu, F. B.. “Determinants of Erythrocyte Omega‐3 Fatty Acid Content in Response to Supplementation”. Journal of the American Heart Association (2013). https://www.ahajournals.org/doi/full/10.1161/JAHA.113.000513
Phosphatidylcholines are major structural components of red blood cell membranes. Changes in phosphatidylcholine aa C36:4 may indicate alterations in red blood cell membrane phospholipid composition.
Sphingomyelins are important lipids in red blood cell membranes. Alterations in sphingomyelin C24:1 levels may reflect changes in red blood cell membrane composition and integrity.