Low-density lipoprotein (LDL) cholesterol is often referred to as “bad” cholesterol because it can contribute to the buildup of fatty deposits in the arteries. High levels of LDL cholesterol are associated with an increased risk of heart disease.
Cholesteryl esters containing palmitic acid (16:0) are common components of LDL particles and directly contribute to measured LDL cholesterol levels.
References
A. C. Rigotti, A. M. Gotto Jr., J. L. Witztum. Cholesteryl Esters of Aggregated LDL Are Internalized by Selective Uptake in Human Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology (2006). https://www.ahajournals.org/doi/full/10.1161/01.ATV.0000193618.32611.8b
Cholesteryl esters, especially those containing oleic acid (18:1), are major components of LDL particles and directly contribute to measured LDL cholesterol levels.
References
R. N. Fruchart, J. P. S. Simons, and J. D. Brunzell. Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Nature Reviews Drug Discovery (2009). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806550/
Mathias J. Gerl, Winchil L. C. Vaz, Neuza Domingues, Christian Klose, Michal A. Surma, Júlio L. Sampaio, Manuel S. Almeida, Gustavo Rodrigues, Pedro Araújo-Gonçalves, Jorge Ferreira, Claudia Borbinha. Cholesterol is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients. Frontiers in Physiology (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170447/
Cholesteryl esters, especially those containing linoleic acid (18:2), are major components of LDL particles and directly contribute to measured LDL cholesterol levels.
References
M. Krieger, M. L. Barbarash, and R. J. Levy. “Cholesteryl Esters of Aggregated LDL Are Internalized by Selective Uptake in Human Fibroblasts”. Arteriosclerosis (1984). https://www.ahajournals.org/doi/full/10.1161/01.ATV.0000193618.32611.8b
S. M. Grundy, J. P. Miller, and A. J. Lusis. “Cholesterol Is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients”. PLOS ONE (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170447/
Lysophosphatidylcholines are derived from phosphatidylcholines. Levels of lysoPC a C18:1 may reflect LDL particle remodeling and correlate with LDL cholesterol.
References
Chang, C.-H., et al.. Lysophosphatidylcholine, Oxidized Low-Density Lipoprotein, and Cardiovascular Disease in Hemodialysis Patients. American Journal of Nephrology (2018). https://www.karger.com/Article/FullText/487607
Kunitomo, M., et al.. Lysophosphatidylcholine contents in plasma LDL in patients with type 2 diabetes mellitus. Atherosclerosis (2007). https://www.sciencedirect.com/science/article/pii/S0021915007001190
Chang, C.-H., et al.. Lysophosphatidylcholine, Oxidized Low-Density Lipoprotein, and Cardiovascular Disease in Hemodialysis Patients. American Journal of Nephrology (2018). https://www.karger.com/Article/FullText/487607
Lysophosphatidylcholines are derived from phosphatidylcholines. Levels of lysoPC a C18:2 may reflect LDL particle remodeling and correlate with LDL cholesterol.
References
Han X, Frias JP, Zhang L, Zhang J, Liang B, Zhang Y, Wang N, Liang G, Li X, Li H, et al.. Lysophosphatidylcholine Promotes Cholesterol Efflux From Mouse Macrophage Foam Cells. Arteriosclerosis, Thrombosis, and Vascular Biology (2007). https://www.ahajournals.org/doi/full/10.1161/01.atv.17.7.1258
Ko B, Kim HJ, Kim DH, Kim YJ, Lee J, Kim YS, Kim K, Kim JS, Kim HC, Kim HW, et al.. Lysophosphatidylcholine, Oxidized Low-Density Lipoprotein, and Cardiovascular Disease in Hemodialysis Patients. PLoS One (2013). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565139/
Lee SH, Lin YH, Cheng HC, Cheng JT. An Updated Review of Lysophosphatidylcholine: Metabolism, Functions, and Diseases. BioMed Research International (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429061/
Kawano H, Yoshida H, Kawashiri MA, Kawakami A, Matsui T, Yokode M, Ishibashi S, Kobayashi J, Matsuzawa Y. Lysophosphatidylcholine Content in Plasma LDL in Patients With Type 2 Diabetes Mellitus. Journal of Atherosclerosis Thrombosis (2007). https://www.sciencedirect.com/science/article/pii/S0021915007001190
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C34:2 likely correlates with the number and size of LDL particles.
References
Thomas A. Lagace. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Journal of Lipid Research (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821435/
Cohn, J.S.; Kamili, A.; Wat, E.; Chung, R.W.S.; Tandy, S.. Dietary Phospholipids and Intestinal Cholesterol Absorption. Nutrients (2010). https://www.mdpi.com/2072-6643/2/2/116
Unknown. The effect of dietary phosphatidylcholine supplementation on lipid profile in mild hyperlipidaemic individuals. Proceedings of the Nutrition Society (2017). https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/effect-of-dietary-phosphatidylcholine-supplementation-on-lipid-profile-in-mild-hyperlipidaemic-individuals/679362C100EB785B5789B300F2204375
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C36:2 likely correlates with the number and size of LDL particles.
References
Thomas A. Lagace. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Journal of Lipid Research (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821435/
Taina T. Katajamäki, Marja-Kaisa Koivula, Mika Hilvo, Mitja T. A. Lääperi, Marika J. Salminen, Anna M. Viljanen, Elisa T. M. Heikkilä, Minna K. Löppönen, Raimo E. Isoaho, Sirkka-Liisa Kivelä, Antti Jylhä, Laura Viikari, Kerttu M. Irjala, Kari J. Pulkki, Reijo M. H. Laaksonen. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clinical Chemistry (2022). https://academic.oup.com/clinchem/article/68/12/1502/6779897
S.C. Chong, J.M. R. Goh, and S.K. Tan. The effect of dietary phosphatidylcholine supplementation on lipid profile in mild hyperlipidaemic individuals. Proceedings of the Nutrition Society (2017). https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/effect-of-dietary-phosphatidylcholine-supplementation-on-lipid-profile-in-mild-hyperlipidaemic-individuals/679362C100EB785B5789B300F2204375
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C36:3 likely correlates with the number and size of LDL particles.
References
Thomas A. Lagace. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Journal of Lipid Research (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821435/
E. R. Carlsson, K. H. Allin, S. Madsbad, et al.. Phosphatidylcholine and its relation to apolipoproteins A-1 and B changes after Roux-en-Y gastric bypass: a cohort study. Lipids in Health and Disease (2019). https://lipidworld.biomedcentral.com/articles/10.1186/s12944-019-1111-7
T. T. Katajamäki, M. K. Koivula, M. Hilvo, et al.. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clinical Chemistry (2022). https://doi.org/10.1093/clinchem/hvac158
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C36:4 likely correlates with the number and size of LDL particles.
References
S. J. Childs, J. Bowlin. The effect of dietary phosphatidylcholine supplementation on lipid profile in mild hyperlipidaemic individuals. Proceedings of the Nutrition Society (2017). https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/effect-of-dietary-phosphatidylcholine-supplementation-on-lipid-profile-in-mild-hyperlipidaemic-individuals/679362C100EB785B5789B300F2204375
J. P. van der Vusse, J. W. Vreugdenhil, H. M. J. M. Verhoeven, W. J. Sluiter. Oral polyunsaturated phosphatidylcholine reduces plasma lipids, lipoproteins and platelet function and composition in healthy volunteers. Agents Actions Suppl. (1984). https://pubmed.ncbi.nlm.nih.gov/3900615/
T. T. Katajamäki, M. K. Koivula, M. H. Hilvo, M. T. A. Lääperi, M. J. Salminen, A. M. Viljanen, E. T. M. Heikkilä, M. K. Löppönen, R. E. Isoaho, S. -L. Kivelä, A. Jylhä, L. Viikari, K. M. Irjala, K. J. Pulkki, R. M. H. Laaksonen. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clinical Chemistry (2022). https://academic.oup.com/clinchem/article/68/12/1502/6779897
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C38:3 likely correlates with the number and size of LDL particles.
References
O’Sullivan, M. A., O’Sullivan, T. A., & O’Brien, N. M.. The effect of dietary phosphatidylcholine supplementation on lipid profile in mild hyperlipidaemic individuals. Proceedings of the Nutrition Society (2017). https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/effect-of-dietary-phosphatidylcholine-supplementation-on-lipid-profile-in-mild-hyperlipidaemic-individuals/679362C100EB785B5789B300F2204375
Katajamäki, T. T., Koivula, M. K., Hilvo, M., Lääperi, M. T. A., Salminen, M. J., Viljanen, A. M., … & Laaksonen, R. M. H.. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clinical Chemistry (2022). https://academic.oup.com/clinchem/article/68/12/1502/6779897
Lagace, T. A.. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Journal of Lipid Research (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821435/
Nestel, P. J., Pomeroy, S., & Mori, T. A.. Oral polyunsaturated phosphatidylcholine reduces plasma lipids, lipoproteins and platelet function and composition in healthy volunteers. Atherosclerosis (1984). https://pubmed.ncbi.nlm.nih.gov/3900615/
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C38:4 likely correlates with the number and size of LDL particles.
References
Thomas A. Lagace. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Journal of Lipid Research (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821435/
Taina T Katajamäki, Marja-Kaisa Koivula, Mika Hilvo, Mitja T A Lääperi, Marika J Salminen, Anna M Viljanen, Elisa T M Heikkilä, Minna K Löppönen, Raimo E Isoaho, Sirkka-Liisa Kivelä, Antti Jylhä, Laura Viikari, Kerttu M Irjala, Kari J Pulkki, Reijo M H Laaksonen. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clinical Chemistry (2022). https://academic.oup.com/clinchem/article/68/12/1502/6779897
Sphingomyelins are sphingolipids found in LDL particles that influence their atherogenic properties. SM C24:1 levels may correlate with LDL particle characteristics.
References
Chen, X., Li, J., Zhao, J., Zhang, Y., & Zhang, P.. Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in obesity. Nature Communications (2014). https://www.nature.com/articles/nutd201438
Low-density lipoprotein (LDL) cholesterol is often referred to as “bad” cholesterol because it can contribute to the buildup of fatty deposits in the arteries. High levels of LDL cholesterol are associated with an increased risk of heart disease.
Cholesteryl esters containing palmitic acid (16:0) are common components of LDL particles and directly contribute to measured LDL cholesterol levels.
References
A. C. Rigotti, A. M. Gotto Jr., J. L. Witztum. Cholesteryl Esters of Aggregated LDL Are Internalized by Selective Uptake in Human Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology (2006). https://www.ahajournals.org/doi/full/10.1161/01.ATV.0000193618.32611.8b
Cholesteryl esters, especially those containing oleic acid (18:1), are major components of LDL particles and directly contribute to measured LDL cholesterol levels.
References
R. N. Fruchart, J. P. S. Simons, and J. D. Brunzell. Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Nature Reviews Drug Discovery (2009). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806550/
Mathias J. Gerl, Winchil L. C. Vaz, Neuza Domingues, Christian Klose, Michal A. Surma, Júlio L. Sampaio, Manuel S. Almeida, Gustavo Rodrigues, Pedro Araújo-Gonçalves, Jorge Ferreira, Claudia Borbinha. Cholesterol is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients. Frontiers in Physiology (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170447/
Cholesteryl esters, especially those containing linoleic acid (18:2), are major components of LDL particles and directly contribute to measured LDL cholesterol levels.
References
M. Krieger, M. L. Barbarash, and R. J. Levy. “Cholesteryl Esters of Aggregated LDL Are Internalized by Selective Uptake in Human Fibroblasts”. Arteriosclerosis (1984). https://www.ahajournals.org/doi/full/10.1161/01.ATV.0000193618.32611.8b
S. M. Grundy, J. P. Miller, and A. J. Lusis. “Cholesterol Is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients”. PLOS ONE (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170447/
Lysophosphatidylcholines are derived from phosphatidylcholines. Levels of lysoPC a C18:1 may reflect LDL particle remodeling and correlate with LDL cholesterol.
References
Chang, C.-H., et al.. Lysophosphatidylcholine, Oxidized Low-Density Lipoprotein, and Cardiovascular Disease in Hemodialysis Patients. American Journal of Nephrology (2018). https://www.karger.com/Article/FullText/487607
Kunitomo, M., et al.. Lysophosphatidylcholine contents in plasma LDL in patients with type 2 diabetes mellitus. Atherosclerosis (2007). https://www.sciencedirect.com/science/article/pii/S0021915007001190
Chang, C.-H., et al.. Lysophosphatidylcholine, Oxidized Low-Density Lipoprotein, and Cardiovascular Disease in Hemodialysis Patients. American Journal of Nephrology (2018). https://www.karger.com/Article/FullText/487607
Lysophosphatidylcholines are derived from phosphatidylcholines. Levels of lysoPC a C18:2 may reflect LDL particle remodeling and correlate with LDL cholesterol.
References
Han X, Frias JP, Zhang L, Zhang J, Liang B, Zhang Y, Wang N, Liang G, Li X, Li H, et al.. Lysophosphatidylcholine Promotes Cholesterol Efflux From Mouse Macrophage Foam Cells. Arteriosclerosis, Thrombosis, and Vascular Biology (2007). https://www.ahajournals.org/doi/full/10.1161/01.atv.17.7.1258
Ko B, Kim HJ, Kim DH, Kim YJ, Lee J, Kim YS, Kim K, Kim JS, Kim HC, Kim HW, et al.. Lysophosphatidylcholine, Oxidized Low-Density Lipoprotein, and Cardiovascular Disease in Hemodialysis Patients. PLoS One (2013). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565139/
Lee SH, Lin YH, Cheng HC, Cheng JT. An Updated Review of Lysophosphatidylcholine: Metabolism, Functions, and Diseases. BioMed Research International (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429061/
Kawano H, Yoshida H, Kawashiri MA, Kawakami A, Matsui T, Yokode M, Ishibashi S, Kobayashi J, Matsuzawa Y. Lysophosphatidylcholine Content in Plasma LDL in Patients With Type 2 Diabetes Mellitus. Journal of Atherosclerosis Thrombosis (2007). https://www.sciencedirect.com/science/article/pii/S0021915007001190
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C34:2 likely correlates with the number and size of LDL particles.
References
Thomas A. Lagace. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Journal of Lipid Research (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821435/
Cohn, J.S.; Kamili, A.; Wat, E.; Chung, R.W.S.; Tandy, S.. Dietary Phospholipids and Intestinal Cholesterol Absorption. Nutrients (2010). https://www.mdpi.com/2072-6643/2/2/116
Unknown. The effect of dietary phosphatidylcholine supplementation on lipid profile in mild hyperlipidaemic individuals. Proceedings of the Nutrition Society (2017). https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/effect-of-dietary-phosphatidylcholine-supplementation-on-lipid-profile-in-mild-hyperlipidaemic-individuals/679362C100EB785B5789B300F2204375
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C36:2 likely correlates with the number and size of LDL particles.
References
Thomas A. Lagace. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Journal of Lipid Research (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821435/
Taina T. Katajamäki, Marja-Kaisa Koivula, Mika Hilvo, Mitja T. A. Lääperi, Marika J. Salminen, Anna M. Viljanen, Elisa T. M. Heikkilä, Minna K. Löppönen, Raimo E. Isoaho, Sirkka-Liisa Kivelä, Antti Jylhä, Laura Viikari, Kerttu M. Irjala, Kari J. Pulkki, Reijo M. H. Laaksonen. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clinical Chemistry (2022). https://academic.oup.com/clinchem/article/68/12/1502/6779897
S.C. Chong, J.M. R. Goh, and S.K. Tan. The effect of dietary phosphatidylcholine supplementation on lipid profile in mild hyperlipidaemic individuals. Proceedings of the Nutrition Society (2017). https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/effect-of-dietary-phosphatidylcholine-supplementation-on-lipid-profile-in-mild-hyperlipidaemic-individuals/679362C100EB785B5789B300F2204375
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C36:3 likely correlates with the number and size of LDL particles.
References
Thomas A. Lagace. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Journal of Lipid Research (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821435/
E. R. Carlsson, K. H. Allin, S. Madsbad, et al.. Phosphatidylcholine and its relation to apolipoproteins A-1 and B changes after Roux-en-Y gastric bypass: a cohort study. Lipids in Health and Disease (2019). https://lipidworld.biomedcentral.com/articles/10.1186/s12944-019-1111-7
T. T. Katajamäki, M. K. Koivula, M. Hilvo, et al.. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clinical Chemistry (2022). https://doi.org/10.1093/clinchem/hvac158
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C36:4 likely correlates with the number and size of LDL particles.
References
S. J. Childs, J. Bowlin. The effect of dietary phosphatidylcholine supplementation on lipid profile in mild hyperlipidaemic individuals. Proceedings of the Nutrition Society (2017). https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/effect-of-dietary-phosphatidylcholine-supplementation-on-lipid-profile-in-mild-hyperlipidaemic-individuals/679362C100EB785B5789B300F2204375
J. P. van der Vusse, J. W. Vreugdenhil, H. M. J. M. Verhoeven, W. J. Sluiter. Oral polyunsaturated phosphatidylcholine reduces plasma lipids, lipoproteins and platelet function and composition in healthy volunteers. Agents Actions Suppl. (1984). https://pubmed.ncbi.nlm.nih.gov/3900615/
T. T. Katajamäki, M. K. Koivula, M. H. Hilvo, M. T. A. Lääperi, M. J. Salminen, A. M. Viljanen, E. T. M. Heikkilä, M. K. Löppönen, R. E. Isoaho, S. -L. Kivelä, A. Jylhä, L. Viikari, K. M. Irjala, K. J. Pulkki, R. M. H. Laaksonen. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clinical Chemistry (2022). https://academic.oup.com/clinchem/article/68/12/1502/6779897
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C38:3 likely correlates with the number and size of LDL particles.
References
O’Sullivan, M. A., O’Sullivan, T. A., & O’Brien, N. M.. The effect of dietary phosphatidylcholine supplementation on lipid profile in mild hyperlipidaemic individuals. Proceedings of the Nutrition Society (2017). https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/effect-of-dietary-phosphatidylcholine-supplementation-on-lipid-profile-in-mild-hyperlipidaemic-individuals/679362C100EB785B5789B300F2204375
Katajamäki, T. T., Koivula, M. K., Hilvo, M., Lääperi, M. T. A., Salminen, M. J., Viljanen, A. M., … & Laaksonen, R. M. H.. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clinical Chemistry (2022). https://academic.oup.com/clinchem/article/68/12/1502/6779897
Lagace, T. A.. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Journal of Lipid Research (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821435/
Nestel, P. J., Pomeroy, S., & Mori, T. A.. Oral polyunsaturated phosphatidylcholine reduces plasma lipids, lipoproteins and platelet function and composition in healthy volunteers. Atherosclerosis (1984). https://pubmed.ncbi.nlm.nih.gov/3900615/
Phosphatidylcholines are key phospholipids that make up the surface of LDL particles. PC aa C38:4 likely correlates with the number and size of LDL particles.
References
Thomas A. Lagace. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Journal of Lipid Research (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821435/
Taina T Katajamäki, Marja-Kaisa Koivula, Mika Hilvo, Mitja T A Lääperi, Marika J Salminen, Anna M Viljanen, Elisa T M Heikkilä, Minna K Löppönen, Raimo E Isoaho, Sirkka-Liisa Kivelä, Antti Jylhä, Laura Viikari, Kerttu M Irjala, Kari J Pulkki, Reijo M H Laaksonen. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clinical Chemistry (2022). https://academic.oup.com/clinchem/article/68/12/1502/6779897
Sphingomyelins are sphingolipids found in LDL particles that influence their atherogenic properties. SM C24:1 levels may correlate with LDL particle characteristics.
References
Chen, X., Li, J., Zhao, J., Zhang, Y., & Zhang, P.. Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in obesity. Nature Communications (2014). https://www.nature.com/articles/nutd201438