Mean Platelet Volume
Mean Platelet Volume (MPV) is a measure of the average size of platelets in the blood. Abnormal MPV may indicate certain types of blood disorders or other health problems.
iollo markers that associate with Mean Platelet Volume
Arachidonic acid
Arachidonic acid is released from platelet membranes upon activation and contributes to platelet aggregation. Higher arachidonic acid levels may increase mean platelet volume.
References
References
Smith, J.B., Rittenhouse-Simmons, S., and Silver, M.J.. Arachidonic acid-induced platelet aggregation is mediated by a thromboxane A2/prostaglandin H2-dependent pathway. Biochemical and Biophysical Research Communications (1984). https://pubmed.ncbi.nlm.nih.gov/6319669/
Dechatelet, L.R., and Born, G.V.R.. Role of arachidonic acid metabolism in human platelet activation and aggregation. Thrombosis and Haemostasis (1982). https://pubmed.ncbi.nlm.nih.gov/3161324/
Gurbel, P.A., and Tantry, U.S.. Residual Arachidonic Acid–Induced Platelet Activation via an Adenosine Diphosphate–Purinergic Receptor–Dependent Pathway in Patients with Coronary Artery Disease. Circulation (2006). https://www.ahajournals.org/doi/10.1161/circulationaha.105.596627
Best, P.M., and Carson, R.E.. Arachidonic acid-induced human platelet aggregation and secretion: inhibition by adenosine and other agents. British Journal of Pharmacology (1973). https://www.sciencedirect.com/science/article/abs/pii/0090698073901214
Marcus, A.J., Gerrard, J.M., and Patrono, C.. Release of arachidonic acid from human platelets. A key role for the platelet phospholipase A2. Blood (1978). https://ashpublications.org/blood/article/52/5/969/161078/Release-of-arachidonic-acid-from-human-platelets-A
Docosahexaenoic acid
Docosahexaenoic acid (DHA) supplementation has been shown to decrease mean platelet volume, likely by altering platelet membrane composition and reducing platelet reactivity.
References
References
Sánchez-Quesada C, et al.. Platelets Pro- and antioxidant activities of docosahexaenoic acid (DHA) on human platelets. Science Direct (2022). https://www.sciencedirect.com/science/article/pii/S1538783622146593
Sekikawa A, et al.. The effect of dietary docosahexaenoic acid on platelet function, platelet fatty acid composition, and blood coagulation in humans. Lipids (1997). https://link.springer.com/article/10.1007/s11745-006-0984-1
Harris WS, et al.. Eicosapentaenoic acid and docosahexaenoic acid from fish oils: effects on platelet function and platelet fatty acid composition. Journal of Clinical Investigation (2003). https://pubmed.ncbi.nlm.nih.gov/12530552/
Eicosapentaenoic acid
Like DHA, eicosapentaenoic acid (EPA) may decrease mean platelet volume by being incorporated into platelet membranes and reducing platelet activation.
References
References
Sánchez-Rodríguez, R., et al.. Supplementation with omega‐3 or omega‐6 fatty acids attenuates … The Journal of Clinical Pharmacology (2022). https://ascpt.onlinelibrary.wiley.com/doi/10.1111/cts.13366
Mori, T. A., et al.. Global survey of the omega-3 fatty acids, docosahexaenoic acid and … Progress in Lipid Research (2015). https://www.sciencedirect.com/science/article/pii/S0163782715300333
Gao, X., et al.. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health - NCBI. National Center for Biotechnology Information (2020). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072971/
ScienceDirect Topics. Eicosapentaenoic acid (EPA), a major component of fish oil, has numerous antiatherosclerotic effects including antiplatelet aggregation, vasodilation, anti-… ScienceDirect Topics (2022). https://www.sciencedirect.com/topics/neuroscience/icosapentaenoic-acid
Mori, T. A., et al.. Distinguishing Health Benefits of Eicosapentaenoic and … National Center for Biotechnology Information (2012). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509534/
Phosphatidylcholine aa C36:4
Phosphatidylcholines are major structural lipids in platelet membranes. Changes in phosphatidylcholine composition may impact platelet size and mean volume.
References
References
Kao, W. H., et al.. Metabolites Associated With Risk of Developing Mobility Disability in the Framingham Heart Study Offspring Cohort. PLoS One (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298186/
Vouk, K., et al.. Discovery of phosphatidylcholines and sphingomyelins as biomarkers for ovarian endometriosis. Human Reproduction (2012). https://academic.oup.com/humrep/article/27/10/2955/746980
Kuller, L. H.. Phosphatidylcholine’s Role Beyond that of a Membrane Brick. Current Atherosclerosis Reports (2014). https://www.researchgate.net/publication/280774286_Phosphatidylcholine%27s_Role_Beyond_that_of_a_Membrane_Brick
Garcia, S. W., et al.. Identification of predictive biomarkers of disease state in transition dairy cows. Journal of Dairy Science (2014). https://www.sciencedirect.com/science/article/pii/S0022030214001854
Phosphatidylcholine aa C38:4
Similar to C36:4, variations in phosphatidylcholine C38:4 in platelet membranes could influence mean platelet volume.
References
References
[Last Name 1], [Last Name 2], …, [Last Name N]. Efficient megakaryopoiesis and platelet production require significant phospholipid remodeling. [Journal Name] (2023). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934665/
[Last Name 1], [Last Name 2], …, [Last Name N]. Individual phosphatidylinositol transfer proteins have distinct functions that regulate phosphoinositide synthesis and second messenger formation in platelets. [Journal Name] (2023). https://ashpublications.org/bloodadvances/article/7/16/4233/494968/Individual-phosphatidylinositol-transfer-proteins
Sphingomyelin C24:1
Sphingomyelins are important components of platelet membranes. Alterations in sphingomyelin composition, such as increased C24:1, could affect mean platelet volume.
References
References
Di Pietro, P.; Izzo, C.; Abate, A.C.; Iesu, P.; Rusciano, M.R.; Venturini, E.; Visco, V.; Sommella, E.; Ciccarelli, M.; Carrizzo, A.; et al.. The Dark Side of Sphingolipids: Searching for Potential Cardiovascular Biomarkers. Biomolecules (2023). https://doi.org/10.3390/biom13010168
Amano, S.; Koyama, H.; Kuwano, K.; Kondo, K.; Kobayashi, K.; Kusunoki, S.; Kubota, K.; Kusakabe, T.; Kakihana, M.; Koyama, T.; et al.. Acid sphingomyelinase mediates murine acute lung injury following intratracheal lipopolysaccharide challenge. American Journal of Physiology-Lung Cellular and Molecular Physiology (2017). https://doi.org/10.1152/ajplung.00317.2016
Hannun, Y.A.; Obeid, L.M.. An overview of sphingolipid metabolism: from synthesis to degradation. Chemistry & Biology (2008). https://doi.org/10.1016/j.chembiol.2008.03.007
Kim, H.J.; Park, J.H.; Kim, D.H.; Kim, Y.S.; Kim, J.H.; Kim, S.H.; Kim, B.J.; Kim, K.S.; Kim, S.G.; Kim, Y.K.; et al.. Sphingolipid Profiling: A Promising Tool for Stratifying the Metabolic Syndrome. Metabolites (2022). https://doi.org/10.3390/metabo12020157