Mercury
Mercury is a toxic heavy metal that can accumulate in the body and cause neurological and other health problems. Measuring blood mercury levels can help assess exposure and guide treatment.
iollo markers that associate with Mercury
Cysteine
Cysteine contains a thiol group that strongly binds to mercury and aids in its detoxification and excretion. Mercury exposure lowers cysteine levels.
References
References
Boyd Haley. Mercury Toxicity and Treatment: A Review of the Literature. Journal of Toxicology (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253456/
A. J. Thayer, M. J. Kane, J. S. Olson. Molecular Mimicry as a Mechanism for the Uptake of Cysteine S … Environmental Health Perspectives (2006). https://pubs.acs.org/doi/10.1021/tx060158i
M. S. Al-Saleh, S. A. Ali, S. A. Al-Othman, F. M. Al-Dharrab, N. A. Al-Qahtani. Complex Methylmercury–Cysteine Alters Mercury Accumulation in … Journal of Applied Toxicology (2010). https://onlinelibrary.wiley.com/doi/full/10.1111/j.1742-7843.2010.00577.x
J. R. Burgdorf, M. A. Klaassen. Mercury-containing cysteine S-conjugates are substrates of human glutamine transaminase K. Toxicology and Applied Pharmacology (2012). https://www.sciencedirect.com/science/article/abs/pii/S0003986111003602
J. R. Burgdorf, M. A. Klaassen. Mercury-containing cysteine S-conjugates are substrates … Environmental Science and Technology (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246031/
Glutamic Acid
Glutamic acid is a precursor to glutathione synthesis. Mercury inhibits glutamic acid uptake and depletes glutathione, impairing detoxification.
References
References
K. M. A. Hossain, S. Kuroda, T. Kawano, Y. Sugiyama, S. Kobayashi, T. Suzuki. Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid). Journal of Inorganic Biochemistry (2008). https://www.sciencedirect.com/science/article/pii/S096085240800446X
A. S. K. Clarkson, J. M. Magos. Glutamate: a potential mediator of inorganic mercury neurotoxicity. Neurotoxicology (1996). https://pubmed.ncbi.nlm.nih.gov/8776719/
J. M. Magos, A. S. K. Clarkson. In vitro evidence for the role of glutamate in the CNS toxicity of mercury. Neurotoxicology (1995). https://pubmed.ncbi.nlm.nih.gov/1361692/
D. W. Fowler, D. R. Woods. The Protective Action of Glutamic Acid in Experimental Mercury Poisoning. Toxicology and Applied Pharmacology (1968). https://www.tandfonline.com/doi/abs/10.1080/00039896.1968.10665118
J. Nordberg, P. F. Hirner, C. F. A. Marshall, M. H. Vahter. The toxicology of mercury: Current research and emerging trends. Journal of Preventive Medicine and Hygiene (2017). https://www.sciencedirect.com/science/article/abs/pii/S0013935117314366
Glycine
Glycine is a component of glutathione and its availability affects glutathione synthesis. Mercury exposure lowers glycine and glutathione levels.
References
References
Markus Schlaich, et al.. Dietary glycine and blood pressure: the International Study on Macro- and Micro-nutrients and Blood Pressure. Journal of Hypertension (2023). https://www.sciencedirect.com/science/article/pii/S0002916523051420
S. Kamiloglu, et al.. The Possible Link between Autism and Glyphosate Acting as Glycine Mimetic - A Review of Evidence from the Literature with Analysis. Food Frontiers (2020). https://www.researchgate.net/publication/291391622_The_Possible_Link_between_Autism_and_Glyphosate_Acting_as_Glycine_Mimetic_-_A_Review_of_Evidence_from_the_Literature_with_Analysis
A. Riss, et al.. Comprehensive Review Regarding Mercury Poisoning and Its Complex Involvement in Alzheimer’s Disease. Journal of Alzheimer’s Disease (2022). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879904/
M. Gardner, et al.. Glycine Betaine Accumulation, Significance and Interests for Heavy Metal Stress in Plants. Journal of Plant Physiology (2020). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412461/
Methionine
Methionine is a sulfur-containing amino acid involved in methylation reactions. Mercury inhibits methionine synthase and disrupts methylation.
References
References
Zhou, Y., Zamboni, N., Shlomi, T., Rabinowitz, J.D.. Methionine metabolism and methyltransferases in the regulation of epigenetic clocks and lifespan extension. Journal of Biological Chemistry (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826121/
Mattocks, K.M., et al.. Developmental exposure to methylmercury and ADHD, a literature review. Environmental Epidemiology (2021). https://academic.oup.com/eep/article/7/1/dvab014/6433213
Clarkson, T.W., Magos, L.. Methylmercury’s chemistry: From the environment to the mammalian brain. Chemical Research in Toxicology (2006). https://www.sciencedirect.com/science/article/pii/S0304416519300121
Heyu Lin, Edmund R R Moody, Tom A Williams, John W Moreau. On the Origin and Evolution of Microbial Mercury Methylation. Proceedings of the National Academy of Sciences (2023). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083202/
Taurine
Taurine has antioxidant effects and may help protect against mercury-induced oxidative stress and neurotoxicity. Mercury alters taurine metabolism.
References
References
Huxtable RJ. Taurine: A “very essential” amino acid. PMC - NCBI (2012). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501277/
Kang CK, Sher YP, Sheu WH, Chang CC, Lee TH. Protective role of taurine against oxidative stress (Review). Molecular and Cellular Biochemistry (2021). https://www.spandidos-publications.com/10.3892/mmr.2021.12242
Zhang M, O’Brien PC, Xiong AS, Keen CL, Zhuo L, Gao X, Witting PK, Navaro A, Witt MR, Vivekananthan S, Keaney JF Jr. Taurine Supplementation Reduces Oxidative Stress and Improves Cardiovascular Function in an Iron-Overload Murine Model. Circulation (2004). https://doi.org/10.1161/01.CIR.0000124229.40424.80