Copper is a trace mineral that is important for the formation of collagen, hemoglobin, and certain enzymes. Both high and low levels of copper can cause health problems.
Histidine is involved in copper absorption in the intestines. Altered histidine levels may impact copper uptake and status.
References
H. Sigel, M. Sigel. Copper(II)-histidine stereochemistry. Structure of L-histidinato-D … Journal of the American Chemical Society (1978). https://pubs.acs.org/doi/10.1021/ja00477a020
J. Lee, J. Kim, S. Lee, H. Lee, H. Kim, J. Choi, S. Kim. Exogenous addition of histidine reduces copper availability … - NCBI. Nucleic Acids Research (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349156/
A. Turnlund, E. H. Smith, J. W. Cook, J. W. Anderson. Absorption of copper and copper–histidine complexes across the … Amino Acids (2007). https://link.springer.com/article/10.1007/s00360-007-0203-2
S. M. Schwartz, J. M. Masiello. Inhibition of copper absorption by zinc. Effect of histidine - PubMed. Journal of Laboratory and Clinical Medicine (1982). https://pubmed.ncbi.nlm.nih.gov/1726403/
P. Deschamps, P. P. Kulkarni, M. Gautam-Basak, B. Sarkar. The saga of copper(II)–l-histidine. Biochemistry (2005). https://www.sciencedirect.com/science/article/abs/pii/S0010854504002371
Turnlund, J. R., Keyes, W. R., Peiffer, G. L., & Crawford, D. L.. Inhibition of copper absorption by zinc. Effect of histidine. Journal of Laboratory and Clinical Medicine (1982). https://pubmed.ncbi.nlm.nih.gov/1726403/
Roy, S., & Lönnerdal, B.. Absorption of copper and copper–histidine complexes across the brush-border membrane of rat intestinal cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (2008). https://link.springer.com/article/10.1007/s00360-007-0203-2
Sarkar, B., Deschamps, P. D., Kulkarni, P. P., Gautam-Basak, M., & Liu, J.. The Structure of Copper(II)-Histidine Chelate. Journal of Biological Chemistry (2018). https://www.jbc.org/article/S0021-9258%2818%2999395-6/pdf
Roy, S., & Lönnerdal, B.. Absorption of copper and copper-histidine complexes across the brush-border membrane of freshwater rainbow trout intestine. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (2007). https://pubmed.ncbi.nlm.nih.gov/17724600/
Methionine interacts with copper in the methionine cycle and is involved in copper regulation. Methionine changes can influence copper status.
References
David S. Weber, Jeffrey J. Warren. A survey of methionine-aromatic interaction geometries in the oxidoreductase class of enzymes: What could Met-aromatic interactions be doing near metal sites?. Journal of Inorganic Biochemistry (2018). https://www.sciencedirect.com/science/article/abs/pii/S0162013417307572
Parthasarathy, A.; Cross, P.J.; Dobson, R.C.; Adams, L.E.; Savka, M.A.; Hudson, A.O.. Dysregulated Choline, Methionine, and Aromatic Amino Acid Metabolism in the Jackson Toxic Milk Mouse Model of Wilson Disease. Frontiers in Molecular Biosciences (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867573/
Wang Z., Cerrate S., Coto C., Yan F., Waldroup P. W.. Effect of methionine and trace minerals (zinc, copper and manganese) supplementation on growth performance of broilers subjected to Eimeria challenge. International Journal of Poultry Science (2007). https://www.researchgate.net/publication/228498999_Evaluation_of_Mintrex%C2%AE_copper_as_a_source_of_copper_in_broiler_diets
Wang Y., Yin X., Yin D., Lei Z., Mahmood T., Yuan J.. Effect of methionine and trace minerals (zinc, copper and manganese) supplementation on growth performance of broilers subjected to Eimeria challenge. Animal Nutrition (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720122/
Copper is a trace mineral that is important for the formation of collagen, hemoglobin, and certain enzymes. Both high and low levels of copper can cause health problems.
Histidine is involved in copper absorption in the intestines. Altered histidine levels may impact copper uptake and status.
References
H. Sigel, M. Sigel. Copper(II)-histidine stereochemistry. Structure of L-histidinato-D … Journal of the American Chemical Society (1978). https://pubs.acs.org/doi/10.1021/ja00477a020
J. Lee, J. Kim, S. Lee, H. Lee, H. Kim, J. Choi, S. Kim. Exogenous addition of histidine reduces copper availability … - NCBI. Nucleic Acids Research (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349156/
A. Turnlund, E. H. Smith, J. W. Cook, J. W. Anderson. Absorption of copper and copper–histidine complexes across the … Amino Acids (2007). https://link.springer.com/article/10.1007/s00360-007-0203-2
S. M. Schwartz, J. M. Masiello. Inhibition of copper absorption by zinc. Effect of histidine - PubMed. Journal of Laboratory and Clinical Medicine (1982). https://pubmed.ncbi.nlm.nih.gov/1726403/
P. Deschamps, P. P. Kulkarni, M. Gautam-Basak, B. Sarkar. The saga of copper(II)–l-histidine. Biochemistry (2005). https://www.sciencedirect.com/science/article/abs/pii/S0010854504002371
Turnlund, J. R., Keyes, W. R., Peiffer, G. L., & Crawford, D. L.. Inhibition of copper absorption by zinc. Effect of histidine. Journal of Laboratory and Clinical Medicine (1982). https://pubmed.ncbi.nlm.nih.gov/1726403/
Roy, S., & Lönnerdal, B.. Absorption of copper and copper–histidine complexes across the brush-border membrane of rat intestinal cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (2008). https://link.springer.com/article/10.1007/s00360-007-0203-2
Sarkar, B., Deschamps, P. D., Kulkarni, P. P., Gautam-Basak, M., & Liu, J.. The Structure of Copper(II)-Histidine Chelate. Journal of Biological Chemistry (2018). https://www.jbc.org/article/S0021-9258%2818%2999395-6/pdf
Roy, S., & Lönnerdal, B.. Absorption of copper and copper-histidine complexes across the brush-border membrane of freshwater rainbow trout intestine. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (2007). https://pubmed.ncbi.nlm.nih.gov/17724600/
Methionine interacts with copper in the methionine cycle and is involved in copper regulation. Methionine changes can influence copper status.
References
David S. Weber, Jeffrey J. Warren. A survey of methionine-aromatic interaction geometries in the oxidoreductase class of enzymes: What could Met-aromatic interactions be doing near metal sites?. Journal of Inorganic Biochemistry (2018). https://www.sciencedirect.com/science/article/abs/pii/S0162013417307572
Parthasarathy, A.; Cross, P.J.; Dobson, R.C.; Adams, L.E.; Savka, M.A.; Hudson, A.O.. Dysregulated Choline, Methionine, and Aromatic Amino Acid Metabolism in the Jackson Toxic Milk Mouse Model of Wilson Disease. Frontiers in Molecular Biosciences (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867573/
Wang Z., Cerrate S., Coto C., Yan F., Waldroup P. W.. Effect of methionine and trace minerals (zinc, copper and manganese) supplementation on growth performance of broilers subjected to Eimeria challenge. International Journal of Poultry Science (2007). https://www.researchgate.net/publication/228498999_Evaluation_of_Mintrex%C2%AE_copper_as_a_source_of_copper_in_broiler_diets
Wang Y., Yin X., Yin D., Lei Z., Mahmood T., Yuan J.. Effect of methionine and trace minerals (zinc, copper and manganese) supplementation on growth performance of broilers subjected to Eimeria challenge. Animal Nutrition (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720122/