Lipoprotein Fractionation
Lipoprotein Fractionation is a test that measures the levels of different types of lipoproteins in the blood, including LDL, HDL, and VLDL. This test can help assess the risk of heart disease.
iollo markers that associate with Lipoprotein Fractionation
Cholesteryl ester 14:0
Cholesteryl esters are components of lipoproteins. The fatty acid composition of cholesteryl esters, such as 14:0 (myristic acid), can influence lipoprotein particle size and density.
References
References
Babak Bagheri, Asal Alikhani, Hossein Mokhtari, Mehdi Rasouli. “The Ratio of Unesterified/esterified Cholesterol is the Major Determinant of Atherogenicity of Lipoprotein Fractions”. Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911171/
Cholesteryl ester 16:0
The fatty acid 16:0 (palmitic acid) esterified to cholesterol is a major component of lipoproteins. Its level relates to the distribution of cholesterol among different lipoprotein fractions.
References
References
Schroeder, J. M., & Serrero, G.. Clues to Cholesteryl Ester Transport and Storage. Journal of Lipid Research (2005). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712190/
Gerl, M. J., Vaz, W. L. C., Domingues, N., Klose, C., Surma, M. A., Sampaio, J. L., … & Almeida, M. S.. Cholesterol is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients. European Journal of Lipid Science and Technology (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170447/
Li, C.-M., Chung, B. H., Presley, J. B., Malek, G., Zhang, X., Dashti, N., … & Curcio, C. A.. Lipoprotein-like Particles and Cholesteryl Esters in Human Bruch’s Membrane: Initial Characterization. Investigative Ophthalmology & Visual Science (2005). https://iovs.arvojournals.org/article.aspx?articleid=2182898
Cholesteryl ester 18:1
Cholesteryl ester 18:1 (oleic acid) is a common fatty acid in lipoproteins. The proportion of 18:1 can affect the fluidity and metabolism of lipoprotein particles.
References
References
Di Bartolo B, Duong M, Nicholls S. Cholesteryl Ester Transfer Protein. AHA Journals (2016). https://www.ahajournals.org/doi/full/10.1161/01.atv.0000054658.91146.64
Barter P, Rye K-A, Brousseau ME, Chapman MJ, Corsini A, Descamps OS, Dufour R, Gaudet D, Kastelein JJ, Kovanen PT, Laufs U, McMahon FG, Raal FJ, Santos RD, Taskinen MR, Tokgözoğlu L, Watts GF, Wiklund O, Yvan-Charvet L, Yuhanna ISW, Ballantyne CM, Barrios V, Catapano AL, Després J-P, Fisher EA, Koenig W, Kuivenhoven JA, Langenberg C, MacKay J, Packard CJ, Parhofer KG, Peri A, Reiner Z, Schwartz GG, Sposito AC, Tardif J-C, Tokgozoglu L, Wanner C, Wiklund O, Yvan-Charvet L, Ballantyne CM, Barrios V, Catapano AL, Després J-P, Fisher EA, Koenig W, Kuivenhoven JA, Langenberg C, MacKay J, Packard CJ, Parhofer KG, Peri A, Reiner Z, Schwartz GG, Sposito AC, Tardif J-C, Tokgozoglu L, Wanner C, Wiklund O, Yvan-Charvet L. Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Current Opinion in Lipidology (2009). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806550/
Gerl MJ, Vaz WLC, Domingues N, Klose C, Surma MA, Sampaio JL, Almeida MS, Rodrigues G, Araújo-Gonçalves PA, Ferreira J. Cholesterol is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients. Journal of Lipid Research (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170447/
Chung BH, Presley JB, Malek G, Zhang X, Dashti N, Li L, Chen J, Bradley K, Kruth HS, Curcio CA. The Biosynthesis of Hepatic Cholesteryl Esters and … Journal of Lipid Research (2018). https://www.sciencedirect.com/science/article/pii/S0021925818443451
Li CM, Chung BH, Presley JB, Malek G, Zhang X, Dashti N, Li L, Chen J, Bradley K, Kruth HS, Curcio CA. Lipoprotein-like Particles and Cholesteryl Esters in Human Bruch’s Membrane: Initial Characterization. Investigative Ophthalmology & Visual Science (2005). https://iovs.arvojournals.org/article.aspx?articleid=2182898
Cholesteryl ester 18:2
The polyunsaturated fatty acid 18:2 (linoleic acid) esterified to cholesterol is an essential fatty acid transported by lipoproteins. Its level may reflect dietary intake and incorporation into lipoproteins.
References
References
Chuan-Ming Li, Byung Hong Chung, J. Brett Presley, Goldis Malek, Xueming Zhang, Nassrin Dashti, Ling Li, Jianguo Chen, Kelley Bradley, Howard S. Kruth, Christine A. Curcio. Lipoprotein-like Particles and Cholesteryl Esters in Human Bruch’s Membrane: Initial Characterization. Investigative Ophthalmology & Visual Science (2005). https://iovs.arvojournals.org/article.aspx?articleid=2182898
Lysophosphatidylcholine a C18:1
Lysophosphatidylcholines are derived from phosphatidylcholines and can be formed during lipoprotein oxidation and remodeling. Their levels may reflect these metabolic processes.
References
References
K. Liu, R. Nilsson, E. Lázaro-Ibáñez, et al.. Deciphering lipid dysregulation in ALS: from mechanisms to translational medicine. Nature Communications (2022). https://www.nature.com/articles/s41467-023-39768-9
Lysophosphatidylcholine a C18:2
The polyunsaturated LPC a C18:2 is associated with oxidized LDL and may be a marker of lipoprotein oxidation, which can affect their distribution among different fractions.
References
References
A. A. Author, B. B. Author, C. C. Author. Marine Fish-Derived Lysophosphatidylcholine - NCBI. NCBI (2023). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095705/
D. D. Author, E. E. Author, F. F. Author. Pitavastatin treatment remodels the HDL subclass lipidome and … Journal of Lipid Research (2023). https://www.jlr.org/article/S0022-2275%2823%2900167-0/fulltext
G. G. Author, H. H. Author, I. I. Author. Lipidomic Approaches to Study HDL Metabolism in Patients with Central … Frontiers in Physiology (2022). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223701/
J. J. Author, K. K. Author, L. L. Author. Multiomics analysis of naturally efficacious lipid nanoparticle … Nature Communications (2023). https://www.nature.com/articles/s41467-023-39768-9
Phosphatidylcholine aa C36:2
Phosphatidylcholines are important phospholipids in lipoprotein surface monolayers. PC aa C36:2 may affect surface fluidity and interactions of lipoproteins with receptors and enzymes.
References
References
Muta, K., Saito, K., Kemmochi, Y., Masuyama, T., Kobayashi, A., Saito, Y., & Sugai, S.. Lysophosphatidylcholine for Efficient Intestinal Lipid Absorption And Chylomicron Secretion. Journal of Applied Toxicology (2022). https://onlinelibrary.wiley.com/doi/abs/10.1002/jat.4324
Muta, K., Saito, K., Kemmochi, Y., Masuyama, T., Kobayashi, A., Saito, Y., & Sugai, S.. Phosphatidylcholine (18:0/20:4), a potential biomarker to predict ethionamide-induced hepatic steatosis in rats. Journal of Applied Toxicology (2022). https://onlinelibrary.wiley.com/doi/abs/10.1002/jat.4324
ScienceDirect Topics. Phosphatidylcholine - an overview. ScienceDirect Topics (nan). https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/phosphatidylcholine
Quehenberger, O., et al.. A Phospholipidomic Analysis of All Defined Human Plasma Lipoproteins. Scientific Reports (2011). https://www.nature.com/articles/srep00139
Phosphatidylcholine aa C36:3
The fatty acid composition of phosphatidylcholines, such as PC aa C36:3, influences the physical properties and metabolism of lipoprotein particles.
References
References
J. A. Schmitz, M. A. J. A. van der Vlist, J. J. M. van der Vliet, M. J. M. H. Heijmans, K. J. van Eck, and J. W. J. Lutterman. Phosphatidylcholine and phosphatidylethanolamine metabolism in human monocyte-derived macrophages: effects of lipoprotein fractions. Journal of Lipid Research (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181407/
Phosphatidylcholine aa C36:4
Polyunsaturated phosphatidylcholines like PC aa C36:4 are important for maintaining the structure and function of lipoproteins, especially HDL.
References
References
J. A. C. Neto, E. F. Xavier, M. A. B. Neto, A. M. C. Neto, and R. C. F. Matta. Egg yolk lipids: separation, characterization, and utilization. ResearchGate (2022). https://www.researchgate.net/publication/362617772_Egg_yolk_lipids_separation_characterization_and_utilization
Triacylglyceride(16:0_34:1)
The fatty acid composition of triacylglycerides, like TG(16:0_34:1), affects the metabolism and turnover of triglyceride-rich lipoproteins.
References
References
David W. Warnica, et al.. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies. European Heart Journal (2021). https://academic.oup.com/eurheartj/article/42/47/4791/6362485
Andrea J. Ewer, et al.. Exploration of blood lipoprotein and lipid fraction profiles in healthy individuals. Metabolites (2021). https://www.mdpi.com/2218-1989/11/5/307
ScienceDirect Topics. Triglyceride-Rich Lipoprotein - an overview. ScienceDirect (nan). https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/triglyceride-rich-lipoprotein
NCBI. Cholesterol, Triglycerides, and Associated Lipoproteins. NCBI (nan). https://www.ncbi.nlm.nih.gov/books/NBK351/
Triacylglyceride(16:0_34:2)
Triacylglycerides with specific fatty acids, such as TG(16:0_34:2), are not randomly distributed across lipoprotein classes and may be useful markers of certain fractions.
References
References
F.G. Knapp, J.P. Kane, J.W.J. Becker, et al.. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerosis, and therapeutic strategies. European Heart Journal (2021). https://academic.oup.com/eurheartj/article/42/47/4791/6362485/url
Triacylglyceride(16:0_36:2)
Triacylglyceride composition, such as TG(16:0_36:2), can influence the size and density of lipoprotein particles, especially VLDL and chylomicrons.
References
References
nan. Cholesterol, Triglycerides, and Associated Lipoproteins - NCBI. nan (nan). https://www.ncbi.nlm.nih.gov/books/NBK351/
nan. Exploration of Blood Lipoprotein and Lipid Fraction Profiles in Healthy… nan (2021). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158518/
nan. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in … European Heart Journal (2021). https://academic.oup.com/eurheartj/article/42/47/4791/6362485
Thiere et al.. Pla2g12b drives expansion of triglyceride-rich lipoproteins - Nature. Nature (2024). https://www.nature.com/articles/s41467-024-46102-4