Lipoprotein Fractionation is a test that measures the levels of different types of lipoproteins in the blood, including LDL, HDL, and VLDL. This test can help assess the risk of heart disease.
Cholesteryl esters are components of lipoproteins. The fatty acid composition of cholesteryl esters, such as 14:0 (myristic acid), can influence lipoprotein particle size and density.
References
Babak Bagheri, Asal Alikhani, Hossein Mokhtari, Mehdi Rasouli. “The Ratio of Unesterified/esterified Cholesterol is the Major Determinant of Atherogenicity of Lipoprotein Fractions”. Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911171/
The fatty acid 16:0 (palmitic acid) esterified to cholesterol is a major component of lipoproteins. Its level relates to the distribution of cholesterol among different lipoprotein fractions.
References
Schroeder, J. M., & Serrero, G.. Clues to Cholesteryl Ester Transport and Storage. Journal of Lipid Research (2005). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712190/Gerl, M. J., Vaz, W. L. C., Domingues, N., Klose, C., Surma, M. A., Sampaio, J. L., … & Almeida, M. S.. Cholesterol is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients. European Journal of Lipid Science and Technology (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170447/Li, C.-M., Chung, B. H., Presley, J. B., Malek, G., Zhang, X., Dashti, N., … & Curcio, C. A.. Lipoprotein-like Particles and Cholesteryl Esters in Human Bruch’s Membrane: Initial Characterization. Investigative Ophthalmology & Visual Science (2005). https://iovs.arvojournals.org/article.aspx?articleid=2182898
Cholesteryl ester 18:1 (oleic acid) is a common fatty acid in lipoproteins. The proportion of 18:1 can affect the fluidity and metabolism of lipoprotein particles.
References
Di Bartolo B, Duong M, Nicholls S. Cholesteryl Ester Transfer Protein. AHA Journals (2016). https://www.ahajournals.org/doi/full/10.1161/01.atv.0000054658.91146.64Barter P, Rye K-A, Brousseau ME, Chapman MJ, Corsini A, Descamps OS, Dufour R, Gaudet D, Kastelein JJ, Kovanen PT, Laufs U, McMahon FG, Raal FJ, Santos RD, Taskinen MR, Tokgözoğlu L, Watts GF, Wiklund O, Yvan-Charvet L, Yuhanna ISW, Ballantyne CM, Barrios V, Catapano AL, Després J-P, Fisher EA, Koenig W, Kuivenhoven JA, Langenberg C, MacKay J, Packard CJ, Parhofer KG, Peri A, Reiner Z, Schwartz GG, Sposito AC, Tardif J-C, Tokgozoglu L, Wanner C, Wiklund O, Yvan-Charvet L, Ballantyne CM, Barrios V, Catapano AL, Després J-P, Fisher EA, Koenig W, Kuivenhoven JA, Langenberg C, MacKay J, Packard CJ, Parhofer KG, Peri A, Reiner Z, Schwartz GG, Sposito AC, Tardif J-C, Tokgozoglu L, Wanner C, Wiklund O, Yvan-Charvet L. Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Current Opinion in Lipidology (2009). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806550/Gerl MJ, Vaz WLC, Domingues N, Klose C, Surma MA, Sampaio JL, Almeida MS, Rodrigues G, Araújo-Gonçalves PA, Ferreira J. Cholesterol is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients. Journal of Lipid Research (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170447/Chung BH, Presley JB, Malek G, Zhang X, Dashti N, Li L, Chen J, Bradley K, Kruth HS, Curcio CA. The Biosynthesis of Hepatic Cholesteryl Esters and … Journal of Lipid Research (2018). https://www.sciencedirect.com/science/article/pii/S0021925818443451Li CM, Chung BH, Presley JB, Malek G, Zhang X, Dashti N, Li L, Chen J, Bradley K, Kruth HS, Curcio CA. Lipoprotein-like Particles and Cholesteryl Esters in Human Bruch’s Membrane: Initial Characterization. Investigative Ophthalmology & Visual Science (2005). https://iovs.arvojournals.org/article.aspx?articleid=2182898
The polyunsaturated fatty acid 18:2 (linoleic acid) esterified to cholesterol is an essential fatty acid transported by lipoproteins. Its level may reflect dietary intake and incorporation into lipoproteins.
References
Chuan-Ming Li, Byung Hong Chung, J. Brett Presley, Goldis Malek, Xueming Zhang, Nassrin Dashti, Ling Li, Jianguo Chen, Kelley Bradley, Howard S. Kruth, Christine A. Curcio. Lipoprotein-like Particles and Cholesteryl Esters in Human Bruch’s Membrane: Initial Characterization. Investigative Ophthalmology & Visual Science (2005). https://iovs.arvojournals.org/article.aspx?articleid=2182898
Lysophosphatidylcholines are derived from phosphatidylcholines and can be formed during lipoprotein oxidation and remodeling. Their levels may reflect these metabolic processes.
References
K. Liu, R. Nilsson, E. Lázaro-Ibáñez, et al.. Deciphering lipid dysregulation in ALS: from mechanisms to translational medicine. Nature Communications (2022). https://www.nature.com/articles/s41467-023-39768-9
The polyunsaturated LPC a C18:2 is associated with oxidized LDL and may be a marker of lipoprotein oxidation, which can affect their distribution among different fractions.
Phosphatidylcholines are important phospholipids in lipoprotein surface monolayers. PC aa C36:2 may affect surface fluidity and interactions of lipoproteins with receptors and enzymes.
The fatty acid composition of phosphatidylcholines, such as PC aa C36:3, influences the physical properties and metabolism of lipoprotein particles.
References
J. A. Schmitz, M. A. J. A. van der Vlist, J. J. M. van der Vliet, M. J. M. H. Heijmans, K. J. van Eck, and J. W. J. Lutterman. Phosphatidylcholine and phosphatidylethanolamine metabolism in human monocyte-derived macrophages: effects of lipoprotein fractions. Journal of Lipid Research (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181407/
Triacylglycerides with specific fatty acids, such as TG(16:0_34:2), are not randomly distributed across lipoprotein classes and may be useful markers of certain fractions.
References
F.G. Knapp, J.P. Kane, J.W.J. Becker, et al.. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerosis, and therapeutic strategies. European Heart Journal (2021). https://academic.oup.com/eurheartj/article/42/47/4791/6362485/url